The Clustering of Low-redshift $z \le 2.2$ SDSS Quasars Nic Ross Pennsylvania State University

Yue Shen, Michael Strauss (Princeton), Gordon Richards (Drexel), Dan Vanden Berk, Don Schneider (PSU), Andrew Connolly (U.Washington), Pat Hall (York), Neta Bahcall (Princeton)

Notivation

- Quasars (luminous AGN) long suspected of being powered by accreting SMBH at galaxy centre (Salpeter, Zel'dovich, Lynden-Bell 1960s; Rees 1970s/80s)
- More recent (local) evidence suggests all **massive** galaxies have SMBH with $M_{BH} \sim L \sim \sigma^4$ (e.g. Magorrian98, Gebhart00) e Galaxy/Star Formation and evolution connection, AGN Feedback (??)
- Clustering measurements can give you M_{halo}, t_Q,e,
- (Martini01, Wyithe05). Also can give strong constraints for theoretical models/simulations (especially at z>2).
- Quasars can be seen to large distances e.g. at *z*=2.2 80% age of Universe e evolution of clustering

Notivation

- Quasars relatively rare objects, need to cover large areas
- Mid-1990s, largest quasar samples ≈10³ objects
- Need: clean photometry, multiplexing instrument, large FoV
- SDSS ideal for large quasar survey:
 - High quality 5-band photometry, select targets
 - Very large area coverage (1000s deg²)
 - Multi-fibre spectroscopic follow-up, moderate resolution spectra
- Two major quasar surveys over last 10 years:
 > 2dF QSO Redshift (2QZ, Croom'04, 23,338 QSOs)
 > SDSS Quasar Survey (>100,000 objects observed)

Data

- SDSS **DR5** Quasar Catalogue: 77,429 quasars $(M_i < -22 \text{ and one line } > 1000 \text{ kms}^{-1}).$
- "Primary" target flag: Selected in ugri colour-space, i<19.1 (zMB); griz i<20.2 for $z \ge 3$; or point-source match to FIRST at *i*<19.1 e 55,577 objects, 46,272 at zM2.2, 5713 deg². • "UNIFORM" (Richards06, Shen07 at z>2.9); e 38,208 objects; **30,239** at 0.3≤*z*≤2.2 over 4013 deg² • Avoid 2.2<z<2.9 due to low-completeness

Uniform sample coverage

Data

I ne 2-Point Correlation

Characteristic probability of finding a PAIR of objects compared with a random distribution:

$$dP_{12} = n^2 (1 + x(r)) dV_1 dV_2$$

Power Law behaviour:

 $X(r) = \begin{bmatrix} r \\ r_0 \end{bmatrix}^9 \quad r_0 \text{ correlation length} \\ r_0 \end{bmatrix} \quad e \text{ slope}$

X(s)

Measure the *redshift-space* CF which include peculiar velocities due to cluster infall and random motions leading to "redshift-space distortions".

Can measure e in two dimensions, X(S, p)perpendicular, e and parallel, e to ine-of-sight where S = S + D

Results : $\xi(s)$

•SDSS DR5 e(s), *i*<19.1 s₀=5.95e0.45 h⁻¹ Mpc e=1.16e0.14 (also x(s, p))• 2QZ **Croom 2005** 18.25 <b. <20.85 (*g*≈20.80, *i*~20.4) 2SLAQ da Angela 2008 18 < *g* < 21.85

Results : ξ(r,z)

•Evolution of clustering; realspace SDSS (optical) quasars Myers et al. 2006 X-ray selected AGN from deep, small area surveys e.g. Chandra Deep Fields; XMM-COSMOS

Results: Linear bias b(z) (z<3)

• $\boldsymbol{\xi}_{O} = b^2 \boldsymbol{\xi}_{m}$ Basilakos'08 models, at z<3 gives: *M*_{DMH}~5x10¹² -1x10¹³ h⁻¹ M_{sol} •Jing98: 5x1011 -2x1012 h-1 M_{sol} • Sheth01: 5x1011-4x1012 h-1 Msqluour

Results: Linear bias b(z) (high-z)

• High-z quasars from Shen et al. (2007) LBGs from McLure et al. (0805.1335) Hopkins'07 models e "Uniform Growth"

Results: Radio and Brightest quasars

Shen et al. (2008, in prep.)

Conclusions

- Measured clustering of 30,239 SDSS Quasars at zM2.2
- Single power-law acceptable fit over $1 < s < 25 h^{-1}$ Mpc, s₀=5.95e0.45 h⁻¹ Mpc; e=1.16e0.14 and v. similar clustering behaviour to 2QZ and 2SLAQ surveys.
- Evolution of ξ very weak at z<2, stronger at z>2
- *r*₀ values generally lower than deep X-ray surveys (also see Ryan Hickox talk...)
- Linear bias evolution e M_{DMH} ~5x10¹²-1x10¹³ h⁻¹ M_{sol} and "Uniform Growth" model describes high-*z* data very well. LBGs progenitors *L** *z*<2 quasars (?)
- Radio and most Luminous 10% quasars highly-clustered.
 Final SDSS Quasar catalgoue (DR7) doubles no. quasars

Results : $\xi(\sigma,\pi)$

- SDSS Quasar
- **ξ**(e,e)
- e= e_m^{0.6}/b
 - =0.43e0.01
- (at z=1.27)
- Potential for cosmology; growth of structure but low space-density of quasars
- e low S/N

Results :ξ(s,z)

 Evolution of clustering redshift-space Not strong, s0=6-7 h⁻¹Mpc SDSS Quasars • 2QZ (Croom'05) SDSS AGN (Wake'04)

Results : $\xi(s)$

• 2-Point Correlation Function; use LS estimator

- Jackknife errors
- Redshift-space
- Singe PL;
 s0=5.95e0.45 h⁻¹
 Mpc;
 e=1.16e0.14