The Clustering of Low-redshift $z \leq 2.2$ SDSS Quasars

Nic Ross
Pennsylvania State University

Yue Shen, Michael Strauss (Princeton), Gordon Richards (Drexel), Dan Vanden Berk, Don Schneider (PSU), Andrew Connolly (U.Washington), Pat Hall (York), Neta Bahcall (Princeton)
Motivation

• Quasars (luminous AGN) long suspected of being powered by accreting SMBH at galaxy centre (Salpeter, Zel’dovich, Lynden-Bell 1960s; Rees 1970s/80s)

• More recent (local) evidence suggests all massive galaxies have SMBH with $M_{\text{BH}} \sim L \sim \sigma^4$ (e.g. Magorrian98, Gebhart00) e Galaxy/Star Formation and evolution connection, AGN Feedback (??)

• Clustering measurements can give you $M_{\text{halo}}, t_Q,e,$ (Martini01, Wyithe05). Also can give strong constraints for theoretical models/simulations (especially at $z>2$).

• Quasars can be seen to large distances e.g. at $z=2.2$ 80% age of Universe e evolution of clustering
Motivation

• Quasars relatively rare objects, need to cover large areas
• Mid-1990s, largest quasar samples $\approx 10^3$ objects
• Need: clean photometry, multiplexing instrument, large FoV
• SDSS ideal for large quasar survey:
 ➢ High quality 5-band photometry, select targets
 ➢ Very large area coverage (1000s deg2)
 ➢ Multi-fibre spectroscopic follow-up, moderate resolution spectra
• Two major quasar surveys over last 10 years:
 ➢ 2dF QSO Redshift (2QZ, Croom’04, 23,338 QSOs)
 ➢ SDSS Quasar Survey ($>100,000$ objects observed)
Data

- **SDSS DR5 Quasar Catalogue**: 77,429 quasars ($M_i<-22$ and one line >1000 km s$^{-1}$).
- “Primary” target flag: Selected in $ugri$ colour-space, $i<19.1$ (z_{MB}); $griz$ $i<20.2$ for $z\geq 3$; or point-source match to FIRST at $i<19.1$ e 55,577 objects, 46,272 at $zM2.2$, 5713 deg2.
- “UNIFORM” (Richards06, Shen07 at $z>2.9$); e 38,208 objects; 30,239 at $0.3\leq z\leq 2.2$ over 4013 deg2
- Avoid $2.2<z<2.9$ due to low-completeness
Uniform sample coverage

DR5Q

Uniform
Data

- M_I vs. redshift (z)

77,429 (dr5q)
30,239 (uni)
\(e(r) \) represents the excess probability of finding a PAIR of objects compared with a random distribution:

\[
dP_{12} = n^2 \left(1 + x(r) \right) dV_1 dV_2
\]

- **Power Law behaviour:**

\[
x(r) = \frac{-g}{r - r_0}
\]

- **Measure the redshift-space CF which include peculiar velocities due to cluster infall and random motions leading to “redshift-space distortions”:**

\[
x(s, p)
\]

- **Can measure \(e \) in two dimensions, with perpendicular, \(e \) and parallel, \(e \) to line-of-sight where**

\[
S^2 = s^2 + p^2
\]
Results: $\xi(s)$

- **SDSS DR5**
 - $e(s), i<19.1$
 - $s_o=5.95e0.45 \, h^{-1} \, \text{Mpc}$
 - $e=1.16e0.14$
 - (also $x(s,p)$)

- **2QZ**
 - Croom 2005
 - $18.25 < b_J < 20.85$
 - ($g \approx 20.80, i \sim 20.4)$

- **2SLAQ**
 - da Angela 2008
 - $18 < g < 21.85$

Ross et al. (2008, in prep.)
Results: $\xi(r,z)$

- Evolution of clustering; real-space
- SDSS (optical) quasars
 - Myers et al. 2006
- X-ray selected AGN from deep, small area surveys e.g. Chandra Deep Fields; XMM-COSMOS
Results: Linear bias $b(z)$ ($z < 3$)

- $\xi_Q = b^2 \xi_m$
- Basilakos'08 models, at $z < 3$ gives:
 $M_{DMH} \sim 5 \times 10^{12} - 1 \times 10^{13} h^{-1} M_{\odot}$
- Jing98: $5 \times 10^{11} - 2 \times 10^{12} h^{-1} M_{\odot}$
- Sheth01: $5 \times 10^{11} - 4 \times 10^{12} h^{-1} M_{\odot}$
Results: Linear bias $b(z)$ (high-z)

- High-z quasars from Shen et al. (2007)
- LBGs from McLure et al. (0805.1335)
- Hopkins’07 models e “Uniform Growth”
Results: Radio and Brightest quasars

Shen et al. (2008, in prep.)
Conclusions

• Measured clustering of 30,239 SDSS Quasars at $z \approx 2.2$
• Single power-law acceptable fit over $1<s<25 \, h^{-1} \, \text{Mpc}$, $s_0=5.95e0.45 \, h^{-1} \, \text{Mpc}$; $e=1.16e0.14$ and very similar clustering behaviour to 2QZ and 2SLAQ surveys.
• Evolution of ξ very weak at $z<2$, stronger at $z>2$
• r_0 values generally lower than deep X-ray surveys (also see Ryan Hickox talk…)
• Linear bias evolution $M_{DMH} \sim 5 \times 10^{12}-1 \times 10^{13} \, h^{-1} \, M_{\odot}$ and "Uniform Growth" model describes high-z data very well. LBGs progenitors $L^* \, z<2$ quasars (?)
• Radio and most Luminous 10% quasars highly-clustered.
• Final SDSS Quasar catalogue (DR7) doubles no. quasars
Results: $\xi(\sigma, \pi)$

- SDSS Quasar
 $\xi(e, e)$
- $e = e_m^{0.6}/b$
 $= 0.43e^{0.01}$
 (at $z=1.27$)
- Potential for cosmology; growth of structure but low space-density of quasars
 e low S/N
Results: $\xi(s,z)$

- Evolution of clustering redshift-space
- Not strong, $s_0=6-7\ h^{-1}\text{Mpc}$
- SDSS Quasars
 - 2QZ (Croom’05)
 - SDSS AGN (Wake’04)
Results: $\xi(s)$

- 2-Point Correlation Function; use LS estimator
- Jackknife errors
- Redshift-space
- Single PL; $s_0 = 5.95 \pm 0.45 \ h^{-1} \ Mpc$; $e = 1.16 \pm 0.14$

Ross et al. (2008, in prep.)