

Cosmology from galaxy clustering (in the SDSS)

Will Percival University of Portsmouth

Chicago, Aug 17th 2008

- If galaxy overdensity field is Gaussian
 - 2-pt statistics (counting pairs) are complete
 - can use either $\xi(r)$ (configuration space)
 - or power spectrum P(k) (Fourier space)
- Theory predicts linear mass power spectrum
 - shape depends on $\Omega_m h$
 - BAO depend on $\Omega_{\rm b}/\Omega_{\rm m}$
- But we observe galaxies
 - do not form a Poisson sampling of the mass
 - are "biased"
- We calculate galaxy distances from redshifts
 - complicates analysis
 - peculiar velocity misinterpreted as recession velocity

The power spectrum shape

credit: VIRGO consortium

During radiation domination, pressure support means that small perturbations cannot collapse.

In principle, can measure $\Omega_M h$ from shape of power spectrum, or use as standard ruler

Problem: galaxy-bias

See poster by James Cresswell at this conference, astro-ph/0808.1101

BAO from the galaxy distribution

BAO measurements linked to physical BAO scale through:

Radial direction

 $rac{c}{H(z)}\Delta z$

Angular direction

$$(1+z)D_A\Delta\theta$$

To first order, random pairs depend on

$$D_V = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

Observed BAO position therefore constrains some multiple of $\frac{r_s}{D_V}$

BAO from the 2dFGRS + SDSS

BAO detected at z~0.2

BAO detected at z~0.35

BAO from combined sample

Percival et al., 2007, MNRAS, astro-ph/0705.3323

BAO distance scale measurements

including $r_s/d_A(\text{cmb})=0.0104$,

 $D_V(0.2)/d_A(cmb) = 0.0525 \pm 0.0016$ $D_V(0.35)/d_A(cmb) = 0.0951 \pm 0.0029$

 $r_s/D_V(0.2) = 0.1980 \pm 0.0060$ $r_s/D_V(0.35) = 0.1094 \pm 0.0033$

 $D_V(0.35)/D_V(0.2) = 1.812 \pm 0.060$

Cosmological constraints on ACDM models

University of **Portsmouth**

Discrepancy with ACDM?

LRG BAO on too small scales: further away than expected, so more acceleration between z=0.2 and 0.35

Distance ratio found is $D_V(0.35)/D_V(0.2) = 1.812 \pm 0.060$

CDM expects $D_V(0.35)/D_V(0.2) = 1.67$

Discrepancy is 2.4σ

Linear redshift-space distortions

Percival, White, 2008, astro-ph/0808.0003

Testing General Relativity

Redshift-space distortions constrain $f\sigma_8$, which is as good a test of GR as f

$$f \equiv \frac{d \log D}{d \log a}$$

$$f\sigma_8 \propto rac{dD}{d\log a}$$

Song, Percival, 2008, astro-ph/0807.0810

Conclusions

- Galaxy clustering allows us to test cosmological models in many ways
- Smooth shape of the power spectrum?
 - degenerate with galaxy bias
 - can tell us about galaxy formation
 - SDSS data shows that galaxy bias is a strong function of luminosity and color (see Cresswell poster)
- Baryon acoustic oscillations
 - avoids (almost all of) galaxy bias
 - shown to work as a function of redshift using SDSS
- Redshift-space distortions
 - avoids density bias completely
 - get "for free" for spectroscopic BAO surveys (eg. BOSS)
 - structure formation test so complementary to geometrical tests
 - similar to weak lensing but tests temporal metric fluctuations