Galaxy-Galaxy Interactions
in the general environment
and
clusters of galaxies

Changbom Park
(Korea Institute for Advanced Study)

in collaboration with
YY Choi, HS Hwang (KIAS)
JR Gott (Princeton)
MS Vogeley (Drexel)
M Blanton (NYU)

Current idea of structure formation

- Cosmological structures form hierarchically.
 Small structures form first & merge to grow larger.

To understand structure formation

- Need to understand the consequences of [galaxy interactions] and [mergers]
Do we understand the consequences of

1. **galaxy-galaxy interactions**
 - Star formation activity enhanced?
 - Structures changed? Morphology changed?
 - Physical mechanisms responsible for the changes?

2. **galaxy-cluster interactions**
 - What are galaxies interacting with?
 - Are MDR & MRR fundamental?
 - Same questions as in the g-g interactions

3. **galaxy-galaxy mergers**
 - A merger of two spirals yield an elliptical?
 - Why not mergers yielding spirals?
 - Evolution of merger products
Observational findings

A. Galaxy interactions in the general environment
B. Galaxy interactions in the cluster environment

Summary - Key facts
Morphology Classification

Automatic classifier (reliability, completeness ~ 90%) + visual check → >90% reliable down to r=17.6

E/S0

S/Irr

Final DR7
all galaxies in the NYU-VAC are classified!!

Park & Choi (2005)

red spirals
A. Galaxy interactions in the general environment
Morphology

\[f_E = \text{Probability that a randomly chosen galaxy is an early type} \]

(Park, Gott & Choi 2008)

Consistent with Weinmann et al. (06)'s morphology conformity of satellites
$2+1$D environmental parameter space: neighbor distance, morphology and

Large-scale background density ρ_{20}
Combined effects of the NN & the LS background density
(Park & Choi 2008)

Morphology depends on
1. Local density due to the NN
2. NN's morphological type
3. Background density only within the NN's virial radius
CASE 1: neighbor distance > neighbor's virial radius

No dependence on background density
nor on neighbor morphology

→ tends to be an early type due to the tidal force of the neighbor?
What are r_{neighbor}, neighbor's morphology, background density?
Star formation activity of galaxies in general locations

Two characteristic scales!
Hydrodynamic interaction!

Other galaxy properties
Structure of galaxies in general locations

Park & Choi (2008)
Galaxy-galaxy interactions at higher-z

GOODS-North & GOODS-South (Hwang & Park 2008)

~4000 Galaxies with $M_B < -18.0$, $0.4 < z < 1.0$. Visual morphology classification
B. Galaxy interactions in the cluster environment

Virgo : optical
Virgo : X-ray
SDSS galaxies within and near the Abell clusters
Morphology in 2+1D environmental space

SDSS galaxies within 10r_{200,cl} of 93 relaxed Abell clusters (BCGs excluded)

Characteristic scales \(\sim 1 \sim 3 \) cluster virial radius
Morphology: Early-type fraction vs clustercentric radius

Park & Hwang (2008)
Galaxies within $r_{200,cl}$

1. lack bright ones
2. still respect $L-R_p$ relation down to $\sim 0.2r_{200,cl}$

Formation of bright galaxies through mergers less efficient?
Star formation activity parameters

- ~horizontal contours & sensitive to neighbor type → Instant effects of neighbor
- Color gradient changes at $R_{cl} < r_{200,cl}$
Structure/kinematics parameters

- Compacter, higher, smaller size at $R_{cl} < r_{200,cl}$
- ~vertical contours --> instant and/or cumulative effects of cluster/neighbor
Who's responsible? Cluster/Neighbor, Gravity/Gas

<table>
<thead>
<tr>
<th></th>
<th>morphology</th>
<th>color, W(Ha)</th>
<th>c_{in}</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E-nei</td>
<td>L-nei</td>
<td>L-e</td>
<td>L-l</td>
</tr>
<tr>
<td>Cl-Grav</td>
<td>▽</td>
<td>X</td>
<td>▽</td>
<td>X</td>
</tr>
<tr>
<td>Cl-Gas</td>
<td>▽</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ng-Grav</td>
<td>▽</td>
<td>X</td>
<td>△</td>
<td>X</td>
</tr>
<tr>
<td>Ng-Gas</td>
<td>△</td>
<td>O</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Morphology-cluster radius-nearest neighbor distance relation
Implications I. General environment

1. Effects of neighbor are great & reaches ~Mpc!
 - previously thought it was marginal
 - & effective only within << 100kpc

2. Two characteristic radii: virial radius of NN & merger scale
 - hydrodynamic processes must be involved (dependence on neighbor morphology)

3. Large-scale density matters only when galaxies are closer than \(r_{\text{vir}} \)
 - MD relation is mainly due to g-g interactions rather than the large-scale environment
 - previously thought the LS density could be the direct cause for the MD relation
Implications II. Cluster environment

1. Sharp transition of galaxy properties at $r_{200,\text{cl}}$
 - Morphology, color gradient, structural parameters
 - MD relation not working...
 No preprocessing beyond g-g interaction

2. Smaller transition scales for brighter galaxies
 - due to mass segregation?
 - repeated crossings of bound galaxies undergoing cluster \& neighbor influence \rightarrow dependence of galaxy properties on R_{cl}

3. Still great effects of the neighbor galaxy
 - morphology-clustercentric radius-NN environment relation
 (distance \& morphology)
Conclusions

1. Morphology/SF activity/Structure depend on
 - nearest neighbor galaxy's distance
 - NN's morphology (hydrodynamics involved)
 - large-scale background density when $R_n < r_{\text{vir,nei}}$

2. NN does the critical role both in the field & massive clusters!

3. Critical distances
 - virial density of the nearest galaxy
 - merger scale
 - $1\sim3 \times$ virial radius of the nearest cluster

4. Cluster environment
 - morphology - clustercentric radius - nearest neighbor distance relation

Environmental dependence of galaxy properties

== This was a thesis project Jim recommended me to work on in 1988 !